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Abstract In the era of the Internet of Things (IoT), conventional cloud-based solu-
tions struggle to handle the huge amount, high velocity, and heterogeneity of data 
generated at the network edge. In this context, the edge-to-cloud compute continuum 
has emerged as an effective solution to reduce bandwidth consumption and latency 
in large-scale applications, through seamless integration of edge computing with 
cloud services and features. In this chapter, we show how the compute continuum 
can be effectively l everaged i n t he c ontext o f s mart a griculture, w ith t he a im of 
supporting greenhouse monitoring and management. We also analyze how LSTM 
neural networks can be integrated into the system to cope with the presence of miss-
ing and anomalous sensor data. A thorough experimental evaluation is performed to 
assess the LSTM performance, also showing how the application deployment at the 
compute continuum can ensure higher scalability in terms of bandwidth and latency, 
compared to a conventional cloud-based solution. Our findings show how the joint 
use of the compute continuum and deep learning can enable the development of a 
green-aware solution that fosters sustainable and efficient agricultural practices.
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1.1 Introduction

Smart agriculture, also known as precision agriculture or digital farming, is an
innovative approach that utilizes advanced technologies and data-driven solutions
to optimize agricultural processes, enhance crop yields, and mitigate environmental
impacts [7]. With the rapid growth of the global population, the increasing challenges
of climate change, resource scarcity, and changing consumer demands, there is a
growing need to revolutionize traditional farming practices and adopt smarter and
more sustainable methods of food production. Smart agriculture leverages cutting-
edge technologies such as Internet of Things (IoT) devices, drones enhanced with
swarm intelligence algorithms, artificial intelligence (AI), and big data analytics to
monitor, analyze, and manage various aspects of farming operations, from soil and
water management to crop monitoring and livestock health. By leveraging real-time
data and advanced analytics, smart agriculture enables farmers to make informed
decisions, optimize resource utilization, reduce costs, and improve overall farm
productivity, while also minimizing environmental impacts.

Despite the great benefits that can be obtained from these systems, their develop-
ment poses a series of technological challenges, due to the collection, integration,
storage, and processing of the vast amount of high-velocity heterogeneous data pro-
duced by IoT devices [17, 2]. In this context, edge computing has emerged as an
effective paradigm that provides a way to overcome these challenges, by pushing
part of the computation, logic, and intelligence close to the data source, i.e. the
edge of the network [12]. In this way, solutions that only rely on the cloud can be
improved in terms of bandwidth consumption, latency, and privacy preservation,
which allows for meeting the quality of service requirements even in the case of
large-scale applications [3]. However, resource constraints of edge devices lead to
the need for integration with cloud computing to allow heavy long-term computation
and persistent storage of vast amounts of data, from which the concept of the compute
continuum arises. This results in the design of complex solutions that necessitate
thorough testing prior to their implementation in real-world settings, with the aim
of evaluating performance, functionality, safety, security, and scalability. Simulation
provides a controlled and cost-effective environment for testing and experimentation,
mitigating risks associated with real-life deployment. However, challenges such as
accurate modeling, availability of realistic datasets, and interoperability issues need
to be addressed to ensure the reliability and validity of simulation results.

In this chapter, we demonstrate how the compute continuum can be effectively
leveraged in the context of smart agriculture. The objective is to facilitate green-
house monitoring and management while maintaining a high level of reliability and
scalability. To achieve this, we incorporate an LSTM-based component into the IoT
system, which effectively handles missing and anomalous sensor data. This integra-
tion enhances the productivity of the system and minimizes its environmental impact
by reducing water waste and greenhouse gas emissions. A thorough experimental
evaluation was performed to assess the effectiveness of the proposed solution from
a twofold viewpoint. On the one hand, we evaluated the neural network accuracy
in estimating the actual greenhouse state, used to replace missing values and cor-
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rect anomalies. On the other hand, we leveraged the iFogSim simulation toolkit to
show that deploying the proposed system at the edge-to-cloud continuum ensures
higher scalability in terms of bandwidth and latency, compared to a conventional
cloud-based solution. Our findings reveal the possibilities that arise from the joint
utilization of the compute continuum and deep learning for sustainable and efficient
agricultural practices.

The structure of this chapter is as follows. Section 1.2 discusses related work,
highlighting the main application of deep learning to smart agriculture. Section 1.3
describes the proposed system, discussing how the LSTM-based component can be
integrated into the greenhouse management system and how the entire system can
be deployed at the edge-to-cloud continuum. Section 1.4 describes the experimental
evaluation and simulation results. Finally, Section 1.5 concludes the chapter.

1.2 Related work

This work sits at the intersection of deep learning and smart agriculture, investigating
how a neural-based component, which relies on an LSTM network, can be effec-
tively integrated into an IoT system devoted to controlling the life cycle of a smart
greenhouse, supporting the decision-making process and enhancing robustness and
reliability. There are many contributions in the literature that integrate deep learning
architectures into IoT systems for smart agriculture, based on different neural archi-
tectures like Convolutional Neural Networks (CNNs) and Recurrent Neural Networks
(RNNs). CNNs, inspired by the functioning of the visual cortex in the human brain,
have a strong capability in image processing, which makes them widely used in
agriculture research for tasks like plant or crop classification, pest detection, plant
disease detection, and disaster monitoring, just to name a few [21, 16, 10]. Large
pre-trained CNN architectures, such as AlexNet, are also leveraged in this context,
as they can be effectively fine-tuned and applied to downstream classification tasks
like disease detection and plant classification [20]. RNNs, on which this chapter
is focused, are better suited to process time series data. In the following, the main
concepts behind these deep learning architectures are discussed, along with the main
applications to smart agriculture.

Long Short-Term Memory Networks. Recurrent Neural Networks (RNNs) are
a type of artificial neural network architecture that are designed to process sequen-
tial and time-series data, where the order of input elements matters. The main idea
behind RNNs is to use memory to contextualize the current input based on past infor-
mation. This kind of persistency, which is absent in traditional feed-forward neural
networks, is achieved through recurrent connections that allow the network to store
information from previous time steps. Specifically, the network maintains a hidden
state that encodes information from what has been processed so far, thus capturing
and modeling temporal dependencies in the data. Long Short-Term Memory (LSTM)
is a type of RNN architecture that was introduced to address the limitations of tradi-
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tional RNNs, such as the vanishing gradient problem, which can hinder the network
in learning long-term dependencies in the data. LSTMs leverage special memory
cells and a gating mechanism that allow them to control the flow of information,
addressing the vanishing gradient problem. This allows the network to capture and
store important information over longer sequences, selectively forgetting irrelevant
information. Let 𝑊 𝑓 ,𝑖,𝑜 and 𝑏 𝑓 ,𝑖,𝑜 be the set of weights and biases of the different
gates, ℎ𝑡 the hidden state at time step 𝑡, 𝑥𝑡 the input at time 𝑡, and 𝐶𝑡 the current cell
state. The LSTM includes three gates performing the following operations:

• Forget gate ( 𝑓𝑡 ): it determines to what extent the components of the cell state
must be maintained, by calculating a score using the sigmoid function.

𝑓𝑡 = 𝜎(𝑊 𝑓 · [ℎ𝑡−1, 𝑥𝑡 ] + 𝑏 𝑓 )

• Input gate (𝑖𝑡 ): it determines what new information to store in the cell state. In
particular, a sigmoid layer chooses which state values should be updated, while a
tanh layer determines the new candidate values �̃�𝑡 .

𝑖𝑡 = 𝜎(𝑊𝑖 · [ℎ𝑡−1, 𝑥𝑡 ] + 𝑏𝑖), �̃�𝑡 = 𝑡𝑎𝑛ℎ(𝑊𝑐 · [ℎ𝑡−1, 𝑥𝑡 ] + 𝑏𝑐)

At this time the cell state can be updated as 𝐶𝑡 = 𝑓𝑡 × 𝐶𝑡−1 + 𝑖𝑡 × �̃�𝑡 .
• Output gate (𝑜𝑡 ): it determines the final output of the module as a filtered version

of the updated cell state:

𝑜𝑡 = 𝜎(𝑊𝑜 · [ℎ𝑡−1, 𝑥𝑡 ] + 𝑏𝑜), ℎ𝑡 = 𝑜𝑡 × 𝑡𝑎𝑛ℎ(𝐶𝑡 )

Main applications to smart agriculture. Recurrent Neural Networks, along with
more sophisticated variants of RNNs like Long Short-Memory (LSTM) and Gated
Recurrent Units (GRU) networks, have been widely used in smart agriculture. Among
the main tasks, these networks were adopted for land cover classification, which
involves the identification and categorization of different types of land cover classes,
such as crops, vegetation, water bodies, built-up areas, and bare soil, within an
agricultural field or a larger agricultural landscape using remote sensing techniques.
For this kind of task, RNNs can be effectively exploited, as they can capture how
land cover like the vegetation changes its spatial appearance periodically over time
[14, 6]. Among the other task, RNNs were utilized for phenotype recognition, crop
yield estimation, weather prediction, and soil moisture estimation [19, 13, 4, 11].
In this study, LSTM networks are leveraged for sensor data forecasting, with the
aim of detecting and handling missing and anomalous sensor data. This neural
component is integrated into a smart greenhouse management IoT system, allowing
for the enhancement of the overall robustness and reliability, by effectively supporting
decision-making and resource utilization.
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1.3 Proposed system

This section provides an in-depth description of the proposed system, which com-
bines an IoT system for monitoring and managing a smart greenhouse with a deep
learning component based on an LSTM neural network. The role of the neural
component is to support decision-making, allowing the proposed system to cope
with the presence of missing and anomalous sensor data, thus improving the overall
robustness and reliability of the system.

LSTM-based
component

Actuators

previous
states

State regressor

End user

Smart greenhouse

predicted
state

Decision
maker

missing values,
detected anomalies

actuation to be performed

Cloud-based
web application

CLOUD

current
state

State
corrector

greenhouse information

Current state
from sensors

corrected
state

Fig. 1.1: Architecture of the proposed system for smart greenhouse management.

The proposed system, whose architecture is shown in Figure 1.1, is composed of
the following components:

• The smart greenhouse, which is equipped with a set of sensors and actuators.
Sensors are used to measure different parameters such as temperature, humidity,
light, and CO2, which make up the current state of the greenhouse at time 𝑡, i.e.
S𝑡 . Actuators, like fans and irrigation systems, are used to perform actions in the
greenhouse in an autonomous way, based on its current state.

• The LSTM-based component receives data gathered by sensors, representing the
current state S𝑡 . It is made up of two sub-components: (𝑖) a state regressor which
computes an estimate E𝑡 of the current state, based on the previous 𝑘 states; and
(𝑖𝑖) a state corrector that uses the predicted state E𝑡 to replace missing values of
S𝑡 and correct anomalies, computing the corrected state C𝑡 .



6 Riccardo Cantini, Fabrizio Marozzo, Alessio Orsino

• The decision maker receives the corrected state C and determines whether an ac-
tuation is needed, sending a command to the actuators installed in the greenhouse.
By using the values corrected by the neural component, the system avoids being
affected by an incorrect representation of the current state of the greenhouse,
caused by distorted measurements related to noise and malfunctions.

• The cloud-based web application provides an interface to the end user, in which
the current state of the greenhouse is described, allowing also to manually trigger
an actuation. Moreover, all the corrections performed by the state corrector are
sent to the web application, as they may imply the need for physical intervention.
In fact, besides the presence of noise in the measurement process, an anoma-
lous/missing value could be caused by a not working sensor - that should be
physically substituted - or by an unexpected situation currently taking place.

In the following, we describe how the LSTM-based component is used for fore-
casting and correcting the greenhouse state measured by the IoT sensors. We also
analyze how the proposed system can be deployed at the edge-to-cloud continuum
to improve scalability and responsiveness, through the combined use of computing
resources and capabilities at different levels of the IoT architecture.

1.3.1 LSTM-based state forecasting and correction

IoT sensors installed in the greenhouse continuously monitor its current state, mea-
suring different parameters including the actual temperature, humidity, light, and
CO2 level. All these values are collected into a vector S𝑡 that represents the current
greenhouse state at time 𝑡. Given the 𝑘 previous states S𝑡−𝑘 , . . . ,S𝑡−1, the state
regressor computes an estimate E𝑡 of the current state S𝑡 that is sent to the state
corrector. This component then computes the correct state C𝑡 starting from the ac-
tual greenhouse state at time 𝑡 with the provided estimate, by correcting anomalies
and replacing missing values. Specifically, let S𝑡

𝑖
be the 𝑖-th component of the green-

house state, e.g. the measured temperature, and E𝑡
𝑖

the corresponding estimate. The
corrected state C𝑡 at time 𝑡 is computed as follows:

C𝑡
𝑖
=

{
E𝑡
𝑖

if S𝑡
𝑖

is missing or |S𝑡
𝑖
− E𝑡

𝑖
|≥ 𝜏𝑖

S𝑡
𝑖

otherwise
,∀𝑖 ∈ {1, . . . , |S𝑡 |}

In other words, if a measurement S𝑡
𝑖

is absent or differs from the prediction more
than a fixed threshold 𝜏𝑖 , i.e. it is anomalous, it is replaced with the corresponding
LSTM estimate E𝑡

𝑖
. It is worth noting that a different threshold is used for the

different parameters included in the greenhouse state. The main advantage of such
an approach is the adoption of a very efficient and fast strategy for state correction,
which is desired when running such a component close to the edge of the network,
due to constrained storage and computation.
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1.3.2 Deployment at the edge-to-cloud continuum

The edge-to-cloud compute continuum provides a seamless integration of computing
resources and capabilities that span from the edge of the network (i.e., the IoT
devices) to the cloud, enabling data processing and analysis at different levels of the
IoT architecture. This continuum encompasses three main layers.

• The edge layer is the closest to the source of data generation, i.e. the edge of the
network. Edge devices, like IoT sensors, gateways, and edge servers, are typically
smaller in scale and have limited computing capabilities. Edge computing enables
to process data locally, which can result in lower latency, improved response times,
and reduced bandwidth usage.

• The fog layer is an intermediate layer between edge and cloud, which includes
resources that are placed closer to the edge of the network but are more powerful
and capable than edge devices. Fog nodes can offload some of the processing tasks
from edge devices, providing more advanced computing and storage capabilities
compared to pure edge computing, while still maintaining lower latency with
respect to the cloud.

• The cloud layer refers to remote data centers and centralized computing infrastruc-
tures. It provides high processing power, vast storage capacity, high scalability,
elasticity, and cost-efficiency. This makes cloud computing ideal for handling
large-scale data processing, complex analytics, and for use cases that require
massive data storage, large-scale data processing, and global accessibility, such
as big data analytics, artificial intelligence, and web applications.

The proposed system can benefit from a deployment on a multi-tier architecture
like the one described above, by effectively exploiting the resources and capabilities
provided by the different levels of the edge-to-cloud continuum. In such a scenario,
an IoT gateway should be placed at the edge level, to collect and aggregate the
raw values coming from the different sensors installed in the greenhouse, and send
them to the LSTM-based component. To allow low latency and a fast actuation, the
LSTM-based component and the decision maker should be placed near the edge of
the network, as they are necessary to determine the needed actuation based on the
current state of the greenhouse. The neural component can be deployed on an edge
server or at least at the fog level, depending on the actual edge capabilities and the
needs in terms of computation, to run neural network inference and state correction,
and storage, to cache the previous states. It is worth noting that the inference process
is far more lightweight with respect to the LSTM training, which can be periodically
performed in the cloud to update and re-align the model. Moreover, the correction
strategy performed by the neural component is very easy and efficient, requiring just
a few computing resources, which enables the possible deployment on constrained
edge devices. Similarly, the decision maker can be deployed at the edge or at least at
the fog level, depending on how resource-intensive is the decision-making strategy,
implemented for determining the needed actuations. Finally, the cloud-based web
application should be placed in the cloud, as it requires global accessibility and data
analytics capabilities, without any strict constraint in terms of latency.
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1.4 Experimental evaluation

In this section, we evaluate the performance of the proposed system from a twofold
viewpoint. On the one hand, we assess the neural network accuracy for both re-
gression and anomaly detection tasks, demonstrating its ability to provide accurate
estimates of the actual greenhouse state. These estimates are used to provide missing
values while also identifying and correcting anomalous data, whose presence can
be due to sensor failures or unexpected events. On the other hand, we show how
deploying the proposed system at the edge-to-cloud continuum, as described in the
previous section, can lead to higher scalability in terms of bandwidth consumption
and latency, compared to a conventional cloud-based solution.

1.4.1 LSTM network evaluation

To evaluate the effectiveness of the proposed system, we developed a proof-of-
concept by training an LSTM network on a dataset containing 10 days of data coming
from four types of sensors, measuring temperature, humidity, light, and CO2 level.
The network was trained for 50 epochs with a batch size of 32, a mean absolute error
(MAE) loss, and the Adam optimizer. In addition, to ensure a smoother convergence
and improve performance, we scheduled the learning rate by progressively reducing
its value on plateaux by a factor of 2, from an initial value of 10−3 to a minimum value
of 10−5. Learning curves are reported in Figure 1.2, showing the mean absolute error
on the training set and on a validation set composed of two days of measurements.
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Fig. 1.2: Mean absolute error on train and validation set during the LSTM training.

The trained regression model was also evaluated on a test set comprising four
days of measurements. The results obtained show a marked ability of the model to
provide very accurate estimates of the various parameters that globally constitute the
state of the greenhouse, with an MAE and a coefficient of determination coefficient
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𝑅2 approaching 0 and 1, respectively. We also evaluated how precisely the estimates
of the LSTM neural network approximate the individual parameters that make up
the greenhouse state measured through time. The high accuracy of the model can be
clearly seen in Figure 1.3, which shows a comparison between the estimates of the
LSTM model and the actual values included in the test set. These results are crucial
to ensure the correct functioning of the entire proposed system, which relies on
an accurate estimate of the current state of the greenhouse. Indeed, these estimates
can be effectively exploited to replace missing values and correct any anomalies,
enhancing system productivity, improving resource utilization, and reducing waste.
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Fig. 1.3: Comparison between LSTM estimates and test values of each parameter
included in the greenhouse state measured through time.

Once assessed the performance of the model for the state forecasting task, we
evaluated the ability of the system in identifying and correcting anomalies. For this
purpose, we modified the test set by inserting random anomalies in the greenhouse
state with probability 𝑝. Anomalies are added at time 𝑡 to the test state S𝑡 - to be
predicted by the network - by multiplying it with a noise vector 𝑛 sampled from a
given distribution D. Therefore, the anomalous state S̃𝑡 can be represented as:

S̃𝑡 = S𝑡
𝑖 · 𝑛𝑖 , ∀𝑖 ∈ {1, . . . , |S𝑡 |} , with 𝑛 ∼ D

In the performed experiments, we set 𝑝 = 0.2, which is the probability to introduce
an anomaly in the test set. Moreover, the threshold 𝜏𝑖 , used to detect an anomaly in
the measurement of the 𝑖-th parameter of the greenhouse state (e.g., the temperature),
was set equal to the 99-th percentile of the test MAE for that parameter. We tested
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the abilities of the system in the presence of different types of noise, using Uniform
(𝑛 ∼ 𝑈 (𝑎, 𝑏)) and Gaussian (𝑛 ∼ N(𝜇, 𝜎)) distributions.

Achieved results, reported in Table 1.1, show the great abilities of the system in
identifying true anomalies (i.e., high recall) and avoiding false positives (i.e., high
precision), which results in a quite good value of f-measure, up to 0.936, in all the
tested configurations.

Uniform noise 𝒏 ∼𝑼 (𝒂, 𝒃) Gaussian noise 𝒏 ∼ N(𝝁,𝝈)

𝒂 = 1.001, 𝒃 = 1.05 𝒂 = 1.001, 𝒃 = 1.15 𝝁 = 1.002, 𝝈 = 0.05 𝝁 = 1.002, 𝝈 = 0.15

recall 0.957 0.996 0.985 0.996
precision 0.876 0.882 0.885 0.883
f-measure 0.915 0.936 0.932 0.936

Table 1.1: Anomaly detection performance for different types of anomalies, arising
from uniformly and Gaussian distributed noise.

1.4.2 Deployment strategies comparison

In this section, we follow a simulation-based approach to investigate how the com-
pute continuum can effectively support the proposed smart greenhouse management
system, through the combined use of different resources that span from the edge of
the network to the cloud. Several works in the literature have highlighted the benefits
of simulating IoT applications [8, 9], also focusing on the use of open-source simu-
lators, such as iFogSim [5], IoTSim [22], and EdgeCloudSim [18] to test specific IoT
applications at the edge-to-cloud continuum [15, 1]. In our experimental evaluation,
we used iFogSim, an open-source simulation toolkit that helps model, simulate,
and evaluate fog computing environments. It offers a comprehensive framework for
modeling various components of fog computing, such as fog devices, IoT devices,
and cloud servers, and simulating their interactions and performance. It also pro-
vides a rich and extensible set of features, including fog service placement, dynamic
migration of fog services, energy modeling, and resource management policies.

We measured the performance and scalability achieved in terms of network usage
and latency, by deploying the proposed application according to two different strate-
gies: (𝑖) an edge-ward strategy, which realizes a deployment at the edge-to-cloud
continuum, as described in Section 1.3.2; (𝑖𝑖) a cloud-only strategy, in which all
the computation and storage occurs within the cloud, in a centralized manner. Table
1.2 describes the simulation parameters used to configure the physical topology on
which the simulated application deployment is operated. Physical devices - ordered
according to their location from the edge to the cloud - are the greenhouse IoT
gateway, the edge server, the ISP gateway, and the cloud.
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Device CPU
(MIPS)

RAM
(GB)

Upload latency
(ms)

Destination
node

Greenhouse IoT gateway 1,000 2 1 Edge server
Edge server 9,000 16 2 ISP gateway
ISP gateway 18,000 64 100 Cloud

Cloud 54,000 128 - -

Table 1.2: Physical devices configuration in iFogSim.

The results achieved in terms of network usage and latency, by progressively
increasing the number of handled greenhouses, are shown in Figure 1.4.
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Fig. 1.4: Simulation results achieved by comparing the edge-ward and cloud-only
deployment strategies, with an increasing number of handled greenhouses.

The comparison clearly reveals the superior performance of the edge-ward strat-
egy over the cloud-based approach, highlighting the evident advantages of utilizing
the compute continuum instead of a cloud-based solution to effectively support the
proposed system. Specifically, the deployment at the edge-to-cloud continuum re-
sults in significant reductions in both network usage and latency, while ensuring
robust scalability. In contrast, the cloud-based solution struggles to handle a grow-
ing number of greenhouses, making the edge-ward strategy even more advantageous
as the number of greenhouses increases. This is attributed to the strategic utiliza-
tion of the continuum of computing resources, over which application components
are intelligently distributed by the deployment strategy based on their compute and
storage requirements.
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1.5 Conclusions

In recent years, the seamless integration of computing resources and capabilities
along the edge-to-cloud compute continuum has emerged as a viable solution to
enable data processing and analysis at various levels of the Internet of Things archi-
tecture. This chapter demonstrates how the compute continuum can be effectively
leveraged in the context of smart agriculture for greenhouse monitoring and man-
agement, proposing the integration of LSTM neural networks as a means to handle
missing and anomalous sensor data. The proposed solution was evaluated through
extensive experiments, focusing on the accuracy of the neural model in forecast-
ing sensor data and detecting anomalies, as well as the scalability advantages of
deploying the application at the edge-to-cloud continuum compared to a conven-
tional cloud-based approach. The achieved results show the high accuracy of the
LSTM model in both the sensor data forecasting and anomaly detection tasks, also
demonstrating how the deployment at the edge-to-cloud continuum can result in
significant reductions in network usage and latency while ensuring robustness and
scalability. Therefore, our findings overall highlight how the combined use of a deep
learning architecture and the compute continuum can enhance system robustness and
reliability, ensuring high efficiency and scalability. Such integration can bring huge
benefits to smart agriculture applications, supporting decision-making, optimizing
resource utilization, and improving overall productivity. It also offers the potential
to minimize environmental impacts, such as reducing water waste and greenhouse
gas emissions, representing a green-aware solution towards more sustainable and
efficient agriculture practices.
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